
INSTYTUT INFORMATYKI
UNIWERSYTETU WROCŁAWSKIEGO

INSTITUTE OF COMPUTER SCIENCE
UNIVERSITY OF WROCŁAW

ul. Joliot-Curie 15
50–383 Wrocław

Poland

Report 03/07

Artur Jeż, Tomasz Jurdziński, Krzysztof Loryś

Results for extensions of prefix grammars

May 2007

RESULTS FOR EXTENSIONS OF PREFIX GRAMMARS

ARTUR JEŻ, TOMASZ JURDZIŃSKI, KRZYSZTOF LORYŚ

ABSTRACT. Frazier and Page [FPJ94] introduced prefix grammars as a slight
modification of Context-Sensitive Grammars (CSG) — with a fixed finite
starting set and a restriction, that any production can be applied only to the
prefix of a word. They proved that the set of languages generated bythose
grammars produce coincide with the regular languages. They also gavean
inefficient algorithms converting a DFA to a prefix grammar and converting
prefix grammars to aNFA. In [RQ02] Ravikumar and Quan gave an
efficient polynomial time algorithms for those two problems. They also posed
a question what happens, when we enrich the prefix grammar — swap a
finite starting set for a regular set or allow applying the productions to the
suffixes of the word as well. They conjectured that those enrichments still
lead to a regular set. In this paper we prove those conjectures and also give a
polynomial time algorithm to transform such a grammar to an equivalentNFA.

Key words: Prefix grammars, regular languages, rewriting systems

1. BACKGROUND AND HISTORY

In [FPJ94] prefix grammars were defined as a tripleG = 〈Σ, S, P 〉 whereΣ is
a finite alphabet,S is a finite set of words over this alphabet, called base strings or
base words, andP is a finite set of production of the formα → β with α andβ

— finite words overΣ. A productionα → β can be applied to a wordw if and
only if w = αw′ and this application results in a wordβw′. The way of applying
productions justifies the name ‘prefix grammar’. LanguageL(G) consists of words
generated from base setS by productionsP .

It was proved in [FPJ94] that every language defined by a prefix grammar is
regular and also every regular language can be described by means ofa prefix
grammar. This result was strengthened in [RQ02] — given a prefix grammarG

we can construct an equivalentNFA in polynomial time and anyDFA can be
transformed to a prefix grammar in polynomial time. Also in this paper an example
of an infinite family of languages for which minimal prefix grammar is exponential
in size of minimal NFA and an infinite family of languages for which minimal
DFA is exponential in the size of minimal prefix grammar were presented, hence
a polynomial time algorith transforming aNFA to a prefix grammar is not pos-
sible.

In [RQ02] some question were posed about the properties of prefix grammars
and their possible extensions. In this paper we deal with two of them and some
natural natural generalizations. Namely — what happens when we allow thebase
set to be a regular set? It was conjectured that such grammar still generates regular

1

2 ARTUR JĖZ, TOMASZ JURDZIŃSKI, KRZYSZTOF LORYŚ

language. We prove this conjecture. Another extension of prefix grammars is to
allow applying productions from both the beginning and the end of the word and
so receive prefix-suffix grammar (please note, that no specific name has been used
before). We prove the conjecture that languages generated by such grammars are
regular. The results holds even if we allow a base set to be a regular set. For all
three proofs we supply polynomial time algorithms to transform the considered
variance of prefix grammar to an equivalentNFA.

2. PREFIX GRAMMARS WITH REGULAR BASE SET

In this section we deal with the case when starting set is a regular set. We
assume that this set is described by anNFA. We give an informal description
of the algorithm of transforming it to an equivalentNFA. This algoritm runs in
polynomial time inG and givenNFA.

We work with a prefix grammarG = 〈Σ, L(M), P 〉 which we abbreviate to
〈Σ, M, P 〉. Since we usually refer to grammars of the form〈Σ, S, P 〉 for some
setS, so it is conveniant to think, that our grammarG has fixed alphabet and pro-
ductions, but its base set may vary. Therefore for fixedG with alphabetΣ and
productionsP we defineG(w) := 〈Σ, {w}, P 〉 andLG(w) := L(〈Σ, {w}, P 〉).
Also instead of a single wordw we will use sets and automata with an obvious
meaning. Also for given (non-deterministic) automataM by Mq we denote au-
tomataM with starting stateq and byM q — with only one accepting stateq. In
both cases we assume, thatq is a state ofM .

Theorem 1. For every prefix grammarG and everyNFA M languageLG(M)
is regular.

Proof. Consider any wordu belonging toLG(M). This word can be obtained
from (at least one) wordw accepted byM . Let us fix this word, its accepting
computation ofM and its transformation tou. Wordw can be written asw = w1w2

with w1, w2 — words (perhaps trivial) andw2 is the longest suffix not modified by
productions of prefix grammar while derivingu. Henceu = u1w2. The derivation
of u from w induces in a natural way a derivation ofu1 from w1. We look closer to
this derivation, we denote the words obtained in consecutive steps byx1, . . . , xn,

wherex1 = w1 andxn = u1, and sow = w1w2 = x1w2
P
→ x2w2

P
→ . . .

P
→

xnw2 = u′w2 = u. Since wholew1 was modified there is some transformation,
that changes the wholexi for somei ∈ [1, n− 1]— because the last letter of some
xi must be modified and we can apply productions only to prefixes. Hence there is
a productionxi → xi+1 in our prefix grammar, denotex := xi+1.

Note, thatu belongs to languageLG(x)w2. In fact, LG(x)w2 ⊂ LG(M) —
all those words can be derived fromw. More, if we take a wordw1w

′ that it is
accepted byM and in its accepting computation after readingw1 automatonM is
in the same state as after readingw1 in fixed accepting computation forw1w2 then
LG(x)w′ ⊂ LG(M): those words can be derived fromw1w

′, w1w
′ is accepted

by M and so it is a base word ofG(M). Condition onw′ means thatMq accepts
w′. Sou ∈ LG(x)L(Mq) ⊂ LG(M) andLG(x)L(Mq) is a regular set (because

RESULTS FOR EXTENSIONS OF PREFIX GRAMMARS 3

LG(x) andL(Mq) are regular sets). Now there are only finitely many pairs(x, q)
— x is a right side of some production inP andq is a state ofM . Since every
wordu in LG(M) belongs to some setLG(x)L(Mq) (perhaps many) then

LG(M) =
⋃

(x,q)∈I

LG(x)L(Mq)

for some finite setI, hence it is a regular language. �

This theorem answers the question stated in [RQ02]. A natural question arises
— is it possible to transform given grammar〈Σ, M, P 〉 to an equivalentNFA?
And if so, what is the complexity of such a task? The answer is not obvious —the
proof of the previous theorem does not give direct answer to this question, however,
it actually gives a good hint — we prove that this task can be done in polynomial
time.

Theorem 2. We can constructNFA N recognizing languageL(〈Σ, M, P 〉) in
timePoly(|M |) · Poly(|G|).

Proof. For every pair(x, q) s.t. q ∈ QM , x ∈ {β : α → β ∈ P} we want to
decide, whetherLG(x)L(Mq) is a subset ofLG(M). It is equivalent to deciding,
whether there is a wordw, such thatw → x andM after readingw is in state
q. Also if M is non-deterministic, then any computation ending inq is good for
us. Let us defineGR = 〈Σ, S, P 〉R := 〈Σ, S, {β → α : α → β ∈ P}〉 — a
prefix grammar obtained fromG by changing the directions of its productions. So
we need to answer, whetherGR(x) ∩ Mq 6= ∅. Since we can transform any prefix
grammar to equivalentNFA in polynomial time, we can also answer the question
of non-emptiness ofGR(x) ∩ Mq 6= ∅ in polynomial time. We do it for every pair
of (x, q), which ends the proof.

�

3. PREFIX-SUFFIX GRAMMARS

We now extend the definition of a prefix grammar to a prefix-suffix grammar.
We define it as follows: a prefix-suffix grammar is a tuple〈Σ, S, Pp, Ps〉 where
Ps is a set of prefix productions andPp is a set of suffix production, the rest of
definition is equivalent to prefix grammar that is a productionα → β ∈ Pp can be
applied to a wordαw resulting in a wordβw and productionα → β ∈ Ps can be
applied to a wordwα resulting in a wordwβ. LanguageL(G) consists of words
generated fromS by productionsPs ∪ Pp. In [RQ02] it was asked, whether those
grammars describe the regular languages? We prove this conjecture.

Theorem 3. For every prefix-suffix grammarG(S) whereS is a finite set language
LG(S) is regular.

Proof. It is enough to show it forS = {w}. We prove this theorem in two steps.
First let us consider the languageL

no overlaps
G (w) ⊂ LG(w) of those wordsu, that

have derivation with no overlaps between prefix and suffix productions(although

4 ARTUR JĖZ, TOMASZ JURDZIŃSKI, KRZYSZTOF LORYŚ

they may as well have some overlapping derivations), that is: if a letter was pro-
duced by a suffix (resp. prefix) production, it is not used by any prefix (resp. suffix)
production. We can visualize this idea as painting letters from both productions
in red and blue and saying, that are are no red-blue repaintings. We claim,that
L

no overlaps
G (w) is regular. Then we reduce the general question to the first one, in

the spirit of Theorem 1 and Theorem 2.
To prove, thatLno overlaps

G (w) is a regular language it is sufficient to notice that:

L
no overlaps
G (w) =

⋃

w1,w2:
w1w2=w

LGprefix
(w1)LGsuffix

(w2)

whereGprefix (resp. Gsuffix) is a prefix (resp. suffix) grammar obtained from
G by removing its suffix productions (resp. prefix productions). Since both
LGprefix

(w1) and LGsuffix
(w2) are regular and the sum is over finite set, then

indeedLno overlaps
G (w) is regular.

To move to the general case let us suppose, thatu is obtained fromw by pro-
ductions ofG and that during the derivation, there was at least one overlap. Let
us look to the last overlap — the last production that creates letters later usedby
production of another kind. There are two cases — this production can besuffix or
prefix, w.l.o.g. we consider the latter. So let the number of this production bep (as
prefix). Let us look to the first suffix production, that uses its letters. Denotes as
number of this production. There may be some production betweenp ands. Let us
first consider the prefix production between them. We know, that letters produced
by them are not used by any suffix productions. Also they do not use any letters
produced by suffix productions. So we may move them all afters without chang-
ing the result of derivation. In the same way any suffix production between p and
s do not use any letters produced byp, so we may move them beforep, without
changing the derived word. So w.l.o.g. we may assume, thatp and s are con-
secutive productions. But after applying them both we receive wordx, on which
derivation is non overlapping. Alsox is not long — it consists ofw1 —- proper
prefix of some right side of prefix derivative andw2 — some right side of suffix
derivative. The same argument applies for the last overlap of the second type. We
say thatx is a seed (forw) if x can be obtained fromw by productions fromG

and two last productions are of different type and are overlapping. Clearly, if x is a
seed, thenLno overlaps

G (x) ⊂ LG(w). Also if u belongs toLG(w), then it belongs to

L
no overlaps
G (w) or there exists a seedx, such that u belongs toLno overlaps

G (x). Hence

LG(w) = L
no overlaps
G (w) ∪

⋃

x∈I

L
no overlaps
G (x)

with x a non overlapping seed andI — some finite set. And soLG(w) is a regular
set. �

A natural question arises, whether it is possible to construct an efficientalgo-
rithm to transform a prefix-suffix grammarG(x) to an equivalentNFA. The
answer is positive.

RESULTS FOR EXTENSIONS OF PREFIX GRAMMARS 5

Theorem 4. There is a polynomial time algorithm, that transforms any prefix-suffix
grammarG(S) (with a finite base setS) to an equivalentNFA.

Before we prove this theorem let us first state a technical lemma. During the
derivation there may be many overlaps. We divide the whole derivation into steps
between two consecutive overlaps. So it is natural to ask the following question.
LetG be a prefix-suffix grammar with a base wordw. Is it possible to derive a word
u with just one overlap during the derivation and that two overlapping productions
are the last two?

Lemma 5. For prefix-suffix grammarG and wordsu, w it is possible to decide in
polynomial time, whetheru belongs toLG(w) and its derivation has exactly one
overlap and two overlapping productions are the last two.

Proof. W.l.o.g. we can assume, that the last productions was a suffix one and it
overlapped some prefix productionp. Let those two productions be of the form
αp → βp andαs → βs respectively. So if we look at the wordu′ that was obtained
after applyingp but befores, it begins withβp and ends withαs and those two
words overlap inu′. Sinceu′ was derived in a non-overlapping way, thenw can be
partitioned tow1, w2 such thatw = w1w2 andu′ can be partitioned tou′ = u′

1u
′
2

satisfying:

(1) βp is a prefix ofu′
1

(2) u′
1 is derived by prefix part ofG from wordw1

(3) u′
2 is derived by suffix part ofG from wordw2

All those condition represents the idea that we in parallel derive a wordu′
1 from w1

by prefix part andu′
2 by suffix part fromw2, the last prefix production isp and then

it is possible to applys that will overlapp, hence using wholeu′
2 and some part of

u′
1. Choosing all possibleαp → βp, αs → βs, w1, w2, u′

1, u′
2 and validating them

can be done in polynomial time — we first chooseβp andαs combine them in an
overlapping way to a wordu′. Then we divide this word to partsu′

1 andu′
2 with

desired properties. We undo the productionp onu′
1 and obtainu′′

1. Now we divide
w to two wordsw1 andw2 and check, whether it is possible to deriveu′′

1 from w1

by prefix part ofG andu′
2 from w2 by suffix part, which can be done in polynomial

time. �

We now prove the theorem 4

Proof. It is enough to prove this theorem forS = {w}. LanguageLG(w)
can be written asLG(w) = L1 ∪ L2 whereL1 consists of those words, that
have at least one non-overlapping derivation andL2 consists of those words,
that have at least one overlapping derivation. Both those sets are regular (con-
sult Theorem 3). We constructM1 and M2 — NFA’s that recognizeL1

and L2 respectively. The case ofL1 is fairly easy, as we already know, that
L1 =

⋃
u,u′:w=uu′ LGprefix(u)LGsuffix(u

′). SinceLGprefix(u) (respectivelyGprefix(u
′))

can be transformed to equivalentNFA in time polynomial in|Gprefix| and |u|
(resp.|Gsuffix| and|u′|) and the sum is over set of size|w| then we constructM1 in
polynomial time.

6 ARTUR JĖZ, TOMASZ JURDZIŃSKI, KRZYSZTOF LORYŚ

The analysis forL2 is again based on searching for the overlaps (as in lemma
5 we can assume, that overlapping productions are consecutive). We look to the
derivation of a wordu from w and to every overlap during this process. The most
natural way of reconstructing the derivation ofu is to first derive all words, that
were obtained just after the first overlap. This can be done in polynomial time(by
Lemma 5), denote the acquired set byS1. Then we look for all words obtained just
after the second overlap (excluding productions taking part in the first overlap),
which is equivalent to searching for words derived fromS1 with only one overlap,
denote those words byS2. In the same way we constructSn. We setS0 = {w}
for convenience. And then we derive non overlapping derivation from base set
S =

⋃
n≥0 Sn. Note, that if

⋃n=k
n=0 Sn =

⋃n=k+1
n=0 Sn thenS =

⋃n=k
n=0 Sn. We give

a polynomial upper bound onS.
We call a word crucial, if it can be obtained from any word by applying two

overlapping productions. We show that there can be only polynomially many cru-
cial words and henceS is polynomial, because all its words are crucial. There are
two cases — the last production was prefix or suffix one. W.l.o.g. we assume,that
it was suffix one. Then if we undo the last production we receive a wordbeginning
with βp for some prefix productionαp → βp and ending with someαs for some
suffix productionαs → βs and those two words have nontrivial overlap. Notice,
that there areO(|G|3) such pairs, because such pairs we have to chooses, choose
p, and decide, how muchαs andβp overlap. Now we apply productionαs → βs

and receive a crucial word, hence there are only polynomially many crucial words
and soS has polynomially many elements at the most. So the process of calculat-
ing S is in fact polynomial — if no element was added in stepn, then we can quit,
and no more then polynomially many elements can be added. �

To make computations more effective we can create a graph with vertices labeled
by triples (αn, βm, u) with αn andβm come from different kind of productions
and u is a crucial word inS (obtained fromαn, βm in a proper way). Also a
special vertex forw is added. Directed edge fromx to y represents the fact that
y can be derived fromx with just one overlap (usual assumption, that overlapping
productions are two last ones applies). Computing, whether edge exists ornot is
polynomial. So searching for reachable vertices is polynomial.

Also it should not surprise the reader, that if we allow a base set for prefix-suffix
grammar to be a regular set, then alsoLG(M) is a regular set as well and equivalent
NFA can be constructed in polynomial time. The proof combines ideas from the
previous proofs, so we give only a sketch of it.

Theorem 6. The languageLG(M) for any finite (nondeterministic) automataM
and prefix-suffix grammar is regular. Also it is possible to transform it to equivalent
NFA in polynomial time.

Proof. We divide this language into two parts:L1 — those words that have at
least one non-overlapping derivation andL2 — those words that have at least one
overlapping derivation. Those languages may have some words in common.We
deal with those cases separately, for each of them we prove that it is regular and
construct an equivalentNFA.

RESULTS FOR EXTENSIONS OF PREFIX GRAMMARS 7

We look at the words ofL2 — in the same way as in previous theorem, those
words form a regular language

⋃
x∈I L

no overlaps
G (x) for some finite setI of cru-

cial words. Also for every suchx it is possible to constructNFA recognizing
L

no overlaps
G (x) in polynomial time. There are only polynomially many possiblex,

so we only have to decide, which one to take and combine theirNFA’s. We take
exactly those words that can be derived fromL(M) by G. But this is equivalent
to ask, for which crucialu it is possible to transform it byGR to some word rec-
ognized byM (being more strict — we should undo the last production and then
apply any productions fromGR). Since we already know, how to transformGR(u)
to equivalentNFA, this question can be answered in polynomial time. Note, that
automata constructed in this way recognizes all words fromL2 and perhaps some
words fromL1 as well, but this does us no harm.

If u belongs toL1 and hence has non overlapping derivation, then the word
w belonging toL(M) that it is derived from, can be partitioned to three words
— w = w1w2w3 satisfying thatw1 is the longest prefix modified by the prefix
part of the grammar,w3 is the longest suffix modified by the suffix productions
andw2 is never modified during the derivation. We can associatex with w1 and
y with w3 as in theorem 1 and theorem 2 — they are prefix and suffix entirely
modified (in one step each) during the derivation. Alsop is a state, that is ac-
quired after readingw1 andq after readingw1w2 by M (we fix some accepting
computation forw). So we have a tuple(x, y, p, q) and have to sum up languages
LGprefix(x)L(M q

p)LGsuffix(y) for (x, y, p, q) in some finite (in fact - polynomial) set.
In the same way as in theorem 2 for(x, y, p, q) we can constructNFA equivalent
to L(Gprefix(x))L(M q

p)L(Gsuffix(y)) in polynomial time and decide which tuples
to take. This claims, that we can constructNFA for L2 in polynomial time. So
the same applies forLG(M). And so we are done. �

REFERENCES

[FPJ94] M. Frazier and C.D. Page Jr. Prefix grammars: An alternative characterization of the regular
languages.Inf. Proc. Let., 51(4):67–71, 1994.

[RQ02] B. Ravikumar and L. Quan. Efficient Algorithms for Prefix Grammars. 2002.

