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RESULTS FOR EXTENSIONS OF PREFIX GRAMMARS

ARTUR JEZ, TOMASZ JURDZNSKI, KRZYSZTOF LORYS

ABSTRACT. Frazier and Page [FPJ94] introduced prefix grammars as a slight
modification of Context-Sensitive Grammars (CSG) — with a fixed finite
starting set and a restriction, that any production can be applied only to the
prefix of a word. They proved that the set of languages generatetidse
grammars produce coincide with the regular languages. They alsoagave
inefficient algorithms converting a DFA to a prefix grammar and conwgrtin
prefix grammars to aN FA. In [RQ02] Ravikumar and Quan gave an
efficient polynomial time algorithms for those two problems. They als@@os

a question what happens, when we enrich the prefix grammar — swap a
finite starting set for a regular set or allow applying the productions to the
suffixes of the word as well. They conjectured that those enrichments still
lead to a regular set. In this paper we prove those conjectures and \&dsa gi
polynomial time algorithm to transform such a grammar to an equivaléftA.

Key words: Prefix grammars, regular languages, rewriting systems

1. BACKGROUND AND HISTORY

In [FPJ94] prefix grammars were defined as a trigle- (X, S, P) whereX. is
a finite alphabet$ is a finite set of words over this alphabet, called base strings or
base words, and is a finite set of production of the form — 3 with o and 3
— finite words overX. A productionae — (3 can be applied to a word if and
only if w = aw’ and this application results in a woftly’. The way of applying
productions justifies the name ‘prefix grammar’. Langua@@') consists of words
generated from base sgty productionsP.

It was proved in [FPJ94] that every language defined by a prefimigiar is
regular and also every regular language can be described by meangrefix
grammar. This result was strengthened in [RQ02] — given a prefix graramar
we can construct an equivalett’ 7 A in polynomial time and any) F' A can be
transformed to a prefix grammar in polynomial time. Also in this paper an example
of an infinite family of languages for which minimal prefix grammar is exponential
in size of minimal /¥4 and an infinite family of languages for which minimal
DF A is exponential in the size of minimal prefix grammar were presented, hence
a polynomial time algorith transforming A/ F.A to a prefix grammar is not pos-
sible.

In [RQO2] some question were posed about the properties of prefinngaas
and their possible extensions. In this paper we deal with two of them and some
natural natural generalizations. Namely — what happens when we allovatee
set to be a regular set? It was conjectured that such grammar still germegéar
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language. We prove this conjecture. Another extension of prefix grasnisito
allow applying productions from both the beginning and the end of the wudd a
so receive prefix-suffix grammar (please note, that no specific nasnedea used
before). We prove the conjecture that languages generated by saroimgrs are
regular. The results holds even if we allow a base set to be a regularaedll F
three proofs we supply polynomial time algorithms to transform the considered
variance of prefix grammar to an equivalehtF A.

2. PREFIX GRAMMARS WITH REGULAR BASE SET

In this section we deal with the case when starting set is a regular set. We
assume that this set is described by AfF.A. We give an informal description
of the algorithm of transforming it to an equivaleAtf F.A. This algoritm runs in
polynomial time inG and given N F A.

We work with a prefix grammaé&z = (3, L(M), P) which we abbreviate to
(3, M, P). Since we usually refer to grammars of the fo(l, .S, P) for some
setS, so it is conveniant to think, that our gramn@Gihas fixed alphabet and pro-
ductions, but its base set may vary. Therefore for figtavith alphabet® and
productionsP we defineG(w) = (X, {w}, P) and Lg(w) := L((X,{w}, P)).
Also instead of a single word> we will use sets and automata with an obvious
meaning. Also for given (non-deterministic) automataby M, we denote au-
tomataM with starting statey and by M7 — with only one accepting statg In
both cases we assume, thas a state of\/.

Theorem 1. For every prefix gramma¢ and every V' ¥ A M languageLq(M)
is regular.

Proof. Consider any word: belonging toLq(M). This word can be obtained
from (at least one) wordv accepted byM. Let us fix this word, its accepting
computation of\/ and its transformation te. Wordw can be written ag = w;w,
with w1, we — words (perhaps trivial) and, is the longest suffix not modified by
productions of prefix grammar while deriving Henceu = u,w». The derivation
of u from w induces in a natural way a derivationwf from w;. We look closer to

this derivation, we denote the words obtained in consecutive steps,by. , z.,,

P P P
wherex; = wy andz,, = u1, and sow = wiwy = TIWy — Tawy — ... —

Tpwe = wwy = u. Since wholew; was modified there is some transformation,
that changes the wholeg for somei € [1,n — 1]— because the last letter of some
x; must be modified and we can apply productions only to prefixes. Henaeither
a productionr; — ;41 in our prefix grammar, denote:= ;.

Note, thatu belongs to languagéq(z)ws. In fact, Lg(z)ws C Lg(M) —
all those words can be derived fromm More, if we take a wordv;w’ that it is
accepted byl and in its accepting computation after readingautomaton\/ is
in the same state as after readingin fixed accepting computation far; w, then
Lg(z)w' € Lg(M): those words can be derived from w’, wiw' is accepted
by M and so it is a base word ¢f(M). Condition onw’ means thaf\/, accepts
w'. Sou € Lg(z)L(M,) C Le(M) andLg(z)L(M,) is a regular set (because
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L (z) andL(M,) are regular sets). Now there are only finitely many péirs;)
— 1z is a right side of some production iR andq is a state ofM/. Since every
wordu in Lg (M) belongs to some séig (z)L(M,) (perhaps many) then

Lo(M)= | La(z)L(M,)
(z,q)€l

for some finite sef, hence it is a regular language. O

This theorem answers the question stated in [RQ02]. A natural quests&s ar
— is it possible to transform given gramm@t, M, P) to an equivalent\V.F.A?
And if so, what is the complexity of such a task? The answer is not obviotlse—
proof of the previous theorem does not give direct answer to thigiquekowever,
it actually gives a good hint — we prove that this task can be done in polyhomia
time.

Theorem 2. We can construct\'F.A N recognizing languagé.((X, M, P)) in
time Poly(|M|) - Poly(|G|).

Proof. For every pair(z,q) s.t. ¢ € Qu,z € {8 : @« — 3 € P} we want to
decide, whethefL ¢ (z)L(M,) is a subset oL (M). Itis equivalent to deciding,
whether there is a word,, such thatv — = and M after readingw is in state
g. Also if M is non-deterministic, then any computation ending iils good for
us. Let us defing?” = (2,5, P\ .= (£,5,{8 - a:a — € P})—a
prefix grammar obtained fro@ by changing the directions of its productions. So
we need to answer, wheth€f?(x) N M, # (. Since we can transform any prefix
grammar to equivalentV' F.A in polynomial time, we can also answer the question
of non-emptiness ofi*(z) N M, # 0 in polynomial time. We do it for every pair
of (z, q), which ends the proof.

O

3. PREFIX-SUFFIX GRAMMARS

We now extend the definition of a prefix grammar to a prefix-suffix grammar.

We define it as follows: a prefix-suffix grammar is a tugke, S, P,, Ps) where

P is a set of prefix productions anfd, is a set of suffix production, the rest of
definition is equivalent to prefix grammar that is a production> 5 € P, can be
applied to a wordvw resulting in a word3w and productior — § € P can be
applied to a wordva resulting in a wordwf3. Languagel(G) consists of words
generated fron$' by productionsPs U P,. In [RQ02] it was asked, whether those
grammars describe the regular languages? We prove this conjecture.

Theorem 3. For every prefix-suffix gramma¥(S) whereS is a finite set language
L¢(S) is regular.

Proof. It is enough to show it foS = {w}. We prove this theorem in two steps.

First let us consider the languad@8? ®*"*{w) c L¢(w) of those words, that
have derivation with no overlaps between prefix and suffix productaltisough
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they may as well have some overlapping derivations), that is: if a letter was p
duced by a suffix (resp. prefix) production, it is not used by anfppfesp. suffix)
production. We can visualize this idea as painting letters from both prodaction

in red and blue and saying, that are are no red-blue repaintings. We thaitn,

L °¥120%,,)) is regular. Then we reduce the general question to the first one, in

the spirit of Theorem 1 and Theorem 2.

To prove, thatl,° ®*"®%.) is a regular language it is sufficient to notice that:

{
LnGO over apiw) = U LGprefim (wl)LGsuffim ('U)Q)

w1,Wwa:
w1 wWy=w

whereG,c i (resp. Gs,rriz) is a prefix (resp. suffix) grammar obtained from
G by removing its suffix productions (resp. prefix productions). Sinct bo
La,, s, (w1) and Lg,, ., (w2) are regular and the sum is over finite set, then

indeedZyy °**"**w) is regular.

To move to the general case let us suppose,thatobtained fromw by pro-
ductions ofG and that during the derivation, there was at least one overlap. Let
us look to the last overlap — the last production that creates letters latebysed
production of another kind. There are two cases — this production canfibe or
prefix, w.l.0.g. we consider the latter. So let the number of this productipnas
prefix). Let us look to the first suffix production, that uses its lettermddes as
number of this production. There may be some production betywaeds. Let us
first consider the prefix production between them. We know, that letteckiped
by them are not used by any suffix productions. Also they do not ugéetters
produced by suffix productions. So we may move them all afigithout chang-
ing the result of derivation. In the same way any suffix production betwesnd
s do not use any letters produced hyso we may move them befoge without
changing the derived word. So w.l.o.g. we may assume,ttaatd s are con-
secutive productions. But after applying them both we receive woh which
derivation is non overlapping. Alse is not long — it consists ofv; —- proper
prefix of some right side of prefix derivative amg — some right side of suffix
derivative. The same argument applies for the last overlap of the dégpa. We
say thatr is a seed (fow) if x can be obtained fromv by productions fromG
and two last productions are of different type and are overlappingri@lé « is a

seed, therL° ®*"%2) L (w). Also if u belongs tol¢(w), then it belongs to

L °¥"20%,,)) or there exists a seed such that u belongs b} ®**"®7z). Hence
LG(UJ) _ LnGO overlapiw) U U Lgo overlap?x)

zel

with « a non overlapping seed aiid— some finite set. And sé(w) is a regular
set. O

A natural question arises, whether it is possible to construct an effigigat
rithm to transform a prefix-suffix gramma¥(x) to an equivalentVVFA. The
answer is positive.
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Theorem 4. There is a polynomial time algorithm, that transforms any prefix-suffix
grammarG(S) (with a finite base sef) to an equivalent\V F A.

Before we prove this theorem let us first state a technical lemma. During the
derivation there may be many overlaps. We divide the whole derivation teps s
between two consecutive overlaps. So it is natural to ask the followingtigne
Let G be a prefix-suffix grammar with a base ward|s it possible to derive a word
u with just one overlap during the derivation and that two overlapping poiaius
are the last two?

Lemma 5. For prefix-suffix grammaé and wordsu, w it is possible to decide in
polynomial time, whethes belongs toL(w) and its derivation has exactly one
overlap and two overlapping productions are the last two.

Proof. W.l.o.g. we can assume, that the last productiomas a suffix one and it
overlapped some prefix productign Let those two productions be of the form
a, — B, andas — [, respectively. So if we look at the word that was obtained
after applyingp but befores, it begins with3, and ends withn, and those two
words overlap in/. Sinceu’ was derived in a non-overlapping way, thercan be
partitioned tow;, wy such thatv = w;w, andu’ can be partitioned ta’ = v,
satisfying:

(1) 5, is a prefix ofu}

(2) u} is derived by prefix part ofs from word w,

(3) uj is derived by suffix part ofs from word w,

All those condition represents the idea that we in parallel derive a wiofidom w,

by prefix part and./, by suffix part fromw,, the last prefix production igand then

it is possible to apply that will overlapp, hence using whole), and some part of
u}. Choosing all possible, — 8,, as — (s, w1, we, v}, uy and validating them
can be done in polynomial time — we first choggganda, combine them in an
overlapping way to a word’. Then we divide this word to parts; andu, with
desired properties. We undo the productioon «; and obtain.]. Now we divide
w to two wordsw; andws and check, whether it is possible to deri/gfrom w;
by prefix part ofG andu, from wy by suffix part, which can be done in polynomial
time. O

We now prove the theorem 4

Proof. It is enough to prove this theorem f&f = {w}. LanguageLg(w)
can be written ad.¢(w) = L; U Le where L; consists of those words, that
have at least one non-overlapping derivation dndconsists of those words,
that have at least one overlapping derivation. Both those sets ararégon-
sult Theorem 3). We construd¥/; and My — NFA’s that recognizel,
and Lo respectively. The case df, is fairly easy, as we already know, that
Ll = Uu,u’:w:uu’ LGprefix(u)LGsufﬁx(ul)' SinceLGprefix(u) (reSpeCtivel)Gpreﬁx(u,))
can be transformed to equivalet’ 7. A in time polynomial in|Gprefix and |u|
(resp.|Gsufiix| and|u’|) and the sum is over set of size| then we construct/; in
polynomial time.
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The analysis foll., is again based on searching for the overlaps (as in lemma
5 we can assume, that overlapping productions are consecutive). ok/éolohe
derivation of a word: from w and to every overlap during this process. The most
natural way of reconstructing the derivationofis to first derive all words, that
were obtained just after the first overlap. This can be done in polynomialbyne
Lemma 5), denote the acquired set$iy Then we look for all words obtained just
after the second overlap (excluding productions taking part in the fietiap),
which is equivalent to searching for words derived fr8imwith only one overlap,
denote those words bY,. In the same way we construsf,. We setSy = {w}
for convenience. And then we derive non overlapping derivatiomfbase set
S = U, > Sn- Note, that if J'=5 S, = J'=h*' S, thenS = (!4 S,,. We give
a polynomial upper bound a$\.

We call a word crucial, if it can be obtained from any word by applying two
overlapping productions. We show that there can be only polynomially many ¢
cial words and henc# is polynomial, because all its words are crucial. There are
two cases — the last production was prefix or suffix one. W.l.0.g. we asshate,
it was suffix one. Then if we undo the last production we receive a Wwegihning
with 3, for some prefix production,, — (3, and ending with some; for some
suffix productiona; — (5 and those two words have nontrivial overlap. Notice,
that there ar@®(|G|?) such pairs, because such pairs we have to chgasteoose
p, and decide, how much, andj, overlap. Now we apply production; — [
and receive a crucial word, hence there are only polynomially manyat¢rords
and soS has polynomially many elements at the most. So the process of calculat-
ing S is in fact polynomial — if no element was added in steghen we can quit,
and no more then polynomially many elements can be added. O

To make computations more effective we can create a graph with verticésdabe
by triples (o, B, u) with «,, and 3, come from different kind of productions
andw is a crucial word inS (obtained froma,,, 3,,, in a proper way). Also a
special vertex for is added. Directed edge fromto y represents the fact that
y can be derived from with just one overlap (usual assumption, that overlapping
productions are two last ones applies). Computing, whether edge exists isr
polynomial. So searching for reachable vertices is polynomial.

Also it should not surprise the reader, that if we allow a base set féixgeffix
grammar to be a regular set, then alg@( /) is a regular set as well and equivalent
N F.A can be constructed in polynomial time. The proof combines ideas from the
previous proofs, so we give only a sketch of it.

Theorem 6. The languagd. (M) for any finite (nondeterministic) automafd
and prefix-suffix grammar is regular. Also itis possible to transform igioealent
N F A in polynomial time.

Proof. We divide this language into two partd:; — those words that have at
least one non-overlapping derivation ahgl— those words that have at least one
overlapping derivation. Those languages may have some words in comifen.
deal with those cases separately, for each of them we prove that itukremd
construct an equivalenyV' F A.
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We look at the words of., — in the same way as in previous theorem, those
words form a regular languadg, ., Ly °"*"*1z) for some finite sef of cru-
cial words. Also for every such it is possible to constructV F.A recognizing
L "% in polynomial time. There are only polynomially many possible
so we only have to decide, which one to take and combine theffA’s. We take
exactly those words that can be derived fréfi\/) by G. But this is equivalent
to ask, for which crucial it is possible to transform it by’ to some word rec-
ognized byM (being more strict — we should undo the last production and then
apply any productions fror?). Since we already know, how to transfofi (u)
to equivalent\/ F A, this question can be answered in polynomial time. Note, that
automata constructed in this way recognizes all words fferand perhaps some
words fromZL; as well, but this does us no harm.

If u belongs toL; and hence has non overlapping derivation, then the word
w belonging toL (M) that it is derived from, can be partitioned to three words
— w = wiwews satisfying thatw is the longest prefix modified by the prefix
part of the grammarws is the longest suffix modified by the suffix productions
andw- is never modified during the derivation. We can associaiéth w, and
y with w3 as in theorem 1 and theorem 2 — they are prefix and suffix entirely
modified (in one step each) during the derivation. Als® a state, that is ac-
quired after readingv; andq after readingw;wy by M (we fix some accepting
computation forw). So we have a tuplér, y, p, ¢) and have to sum up languages
LGre () L(M) Ly, () fOr (2,3, p, ¢) in some finite (in fact - polynomial) set.
In the same way as in theorem 2 far, y, p, ¢) we can construct\V'F.A equivalent
t0 L(Gprefix(x)) L(My ) L(Gsutiix(y)) in polynomial time and decide which tuples
to take. This claims, that we can construkt# A for Ly in polynomial time. So
the same applies fdt;(M). And so we are done. O
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